US009419853B1

a2 United States Patent

Yaeger

(10) Patent No.: US 9,419,853 B1
(45) Date of Patent: *Aug. 16,2016

(54)

(71)

(72)

(73)

")

@
(22)

(63)

(60)

(1)

(52)

(58)

METHOD AND APPARATUS FOR
CONFIGURING A DATA SOURCE NAME
(DSN) FOR USE DURING A DATA SOURCE
ACCESS

Applicant: Open Invention Network LLC,
Durham, NC (US)

Inventor: Marc Todd Yaeger, Hoover, AL (US)

Assignee: Open Invention Network LLC,
Durham, NC (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 211 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/769,336

Filed: Feb. 17, 2013

Related U.S. Application Data

Continuation of application No. 13/118,633, filed on
May 31, 2011, now Pat. No. 9,098,548.

Provisional application No. 61/354,395, filed on Jun.
14, 2010.

Int. CI.

GOGF 17/30 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC HO4L 29/08576 (2013.01); GOGF 17/30427
(2013.01)

Field of Classification Search

None
See application file for complete search history.

Windowes Application

102

(56) References Cited
U.S. PATENT DOCUMENTS

5,475,836 A * 12/1995 Harris et al.

5,611,076 A * 3/1997 Durflinger et al.

5,781,910 A * 7/1998 Gostanian et al. 707/610
5,857,188 A * 1/1999 Douglas

6,016,499 A * 1/2000 Ferguson

6,094,684 A * 7/2000 Pallmann 709/227

6,457,003 B1* 9/2002 Gajda et al.
6,556,995 B1* 4/2003 Child et al.

7,233,940 B2* 6/2007 Bamberger GOG6F 11/006
2001/0056428 Al* 12/2001 Gajdaetal. ... 707/100
2003/0004930 Al* 1/2003 Minderetal. 7072
2004/0148270 Al* 7/2004 McKayetal. . .. 707/1
2005/0055325 Al* 3/2005 Duttetal. ..o 707/1
2006/0265385 Al* 11/2006 Agrawal et al. .. 707/10
2007/0204019 Al* 82007 Martynov et al . 709/223
2008/0059266 Al* 3/2008 Freimann 705/8
2009/0171999 Al* 7/2009 McColl etal. 707/101

OTHER PUBLICATIONS

Apple Computer, Inc., Class EODatabaseContext, WebObjects 5.2.3
Reference Documentation (Oct. 21, 2004), available at http://www.
spice-of-life.net/wodock/api/com/webobjects/coaccess/
EODatabaseContext.html.*

* cited by examiner

Primary Examiner — Thai Nguyen
(74) Attorney, Agent, or Firm — Haynes and Boone, LL.P

(57) ABSTRACT

Certain aspects of the present disclosure relate to a technique
to configure a data source name (DSN) for use during a data
source access. A driver is selected. An identifier is provided
that identifies a class, and a library or an application that
implements a driver interface for accessing the data source. A
connection string is forwarded with the identifier from an
implementation of the driver interface to the driver. The con-
nection string is forwarded from the driver to a driver man-
ager managing a client.

18 Claims, 10 Drawing Sheets

See aftached descrigtion
“Crezfing 2 D3N

diiverif 104

-O.
1ispaich

O
ityriad

-G
Dispateh

o]
ilyriad

inierfate 2xpossy

108

US 9,419,853 B1

Sheet 1 of 10

Aug. 16, 2016

U.S. Patent

L "Old

198 DRG0 penky oy Ag pasede eoelsul
pildy seouasalal uogeoyddy 0 110

B~ SUDUR Yojed
5 SUORAUR BfnaYS
P | ey s
O IS Tapeuioy
PRUARY
IECSICY
Ynedsig: UMOUMITY
O 333t pRuAN

& S

uopesyddy 1o 710

A pasn somoselRg
BUDNE|Y BI015$04

o

UCHIBUOS Y] Bulng
014 84) G palIuSp! Sem
Jet) UORBIUBIUS L] PELAN
84} 0} L0 SY23 Y2ie) puB
SN “YORIRLUED “m&mﬁw
&ty 3aased serun pRLA

¥

peuy
Q.Il

ippedsgy

Cr—

SaAH A

ST BnsekE

SHanIuR, BUBs

SUORHN TO0auiey

CEIA

IRERE]

AT

ool peuAn

A_v %9%2

T oty | Bugung Gupetainy

GGz, | 91U | 130

i3 s weshs | g sesny

JOjRHSIIRUDY 80IN0S BIEQ D800 &

SUOHIUN PAVOGTE 080D

Joaug D800 PRUAN

£
!
;
!
k]
w

uendiosap peyoRye 84g

DR S

?

)

Jenia peudy sy Busp,

uogduosap papepy 888

{19ALD 133005 8L O} SUCKE;
woy sisenha) sjnoy)
sabeuBly oAU

-

-]

BEoosee
jubiens ‘O0Y BUOaY)
$81HIGH LOROSULOD DEA0

iy SMOpLIAA

U.S. Patent Aug. 16, 2016 Sheet 2 of 10 US 9,419,853 B1

ﬁmﬁkﬂ‘k*@*‘*%#ﬂaﬁ*@%‘mﬂ S

FIG. 2a

U.S. Patent Aug. 16, 2016 Sheet 3 of 10 US 9,419,853 B1

FIG 2h

U.S. Patent Aug. 16, 2016 Sheet 4 of 10 US 9,419,853 B1

FIG. 2¢

U.S. Patent Aug. 16, 2016 Sheet 5 of 10 US 9,419,853 B1

FIG. 2d

U.S. Patent Aug. 16, 2016 Sheet 6 of 10 US 9,419,853 B1

TestSisiambSt

FIG. 2e

U.S. Patent Aug. 16, 2016 Sheet 7 of 10 US 9,419,853 B1

FiG. 2f

U.S. Patent

Aug. 16, 2016 Sheet 8 of 10

US 9,419,853 B1

SELECT VIA A USER, THE MYRIAD DRIVER FROM A "CREATE

NEW DATA SOURCE” DIALOG BOX PROVIDED BY A DATA

SOURCE ADMINISTRATION TOOL

}

1
i

PROMPT THE USER TO PROVIDE A PROGID USED TG FIND THE

IMYRIAD IMPLEMENTATION

PASS CONTROL FROM THE DRIVER (JVER TO THE IMYRIAD
IMPLEMENTATION TO GET THE REQUIRED COMNECTION

SETTINGS

PASS QUT A COMPLETE CONNECTION STRING FROM THE

IMYRIAD IMPLEMENTATION TO THE DRIVER

PASS THE RECEIVED CONNECTION STRING FROM THE DRIVER
TO THE DRIVER MANAGER WHICH WRITERIT OUT FOR LATER

4

USE

FiG. 3

- 306
rd
// '/
//’
- 302
yd -~
r'//
- 304
L 306
- "/
S
= 308
i -
yd
o 210

U.S. Patent Aug. 16, 2016 Sheet 9 of 10 US 9,419,853 B1

ATTEMPT TO CONNECT TO THE IMYRIAD IMPLEMENTATION o 402
USING A DSN CREATED IN AN OQDBC DATA SOURCE
ADMINISTRATION TOOL OR PASSING A COMPLETE CONNECTION |
STRING SPECIFYING A DRIVER NAME FOR THE MYRIAD DRIVER

AND THE PROGID OF THE IMYRIAD IMPLEMENTATION

LOAD THE IMYRIAD IMPLEMENTATION BASED ONTHE DSN 1/

AND/OR PROGID FOR THE CONNECTION STRING

i

1

'» - 408
ONCE THE IMYRIAD IMPLEMENTATION 1S LOADED, MARSHAL ALL / '

THE ODBC CALLS USING THE MYRIAD DRIVER FRUGM THE DRIVER |

MANAGER TO THE IMYRIAD IMPLEMENTATION FOR FURTHER

PROCESSING

FiG. 4

U.S. Patent Aug. 16, 2016 Sheet 10 of 10 US 9,419,853 B1

)
e
Ve
- Bo2
SELECT A DRIVER ,,"/
o~ 504
PROVIDE AN IDENTIFIER THAT IDERNTIFIES A CLASS. AND A LIRRARY /,/ 4
OR AN APPLICATION THAT IMPLEMENTS A DRIVER INTERFACE FOR |
ACCESSING THE DATA SOURCE
T
; P
,’/’
FORWARD A COMNECTIOR STRING WITH THE IDENTIFTER FROM AN
DMPLEMENTATION OF THE DRIVER INTERFACE TG THE DRIVER
- 504
,r'/l

FORWARD THE CONNECTION STRING FROM TEHL DRIVER TO A
DRIVER MANAGER MANAGING A CLIENT

FIG. 5

US 9,419,853 B1

1
METHOD AND APPARATUS FOR
CONFIGURING A DATA SOURCE NAME
(DSN) FOR USE DURING A DATA SOURCE
ACCESS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority from and is a continuation
of U.S. application Ser. No. 13/118,633, filed on May 31,
2011, entitted METHOD AND APPARATUS FOR
ACCESSING A DATA SOURCE FROM A CLIENT USING
A DRIVER, which in turn claims priority to U.S. Provisional
Application Ser. No. 61/354,395, filed on Jun. 14, 2010,
entitled MYRIAD ODBC DRIVER. The above applications
are incorporated herein by reference.

FIELD OF THE INVENTION

Embodiments of the invention generally relate to computer
software applications and, more particularly, to a method and
apparatus for configuring a data source name (DSN) for use
during a data source access.

BACKGROUND OF THE INVENTION

Data is key to any organization and I'T’s role is to provide
access to the data. Over the years many methods have been
used to allow access to that data. Service Oriented Architec-
ture (SOA) is the latest concept to provide data to clients
while isolating the client’s involvement in the details of
retrieving the data. This allows for the source of the data to
change while keeping the client isolated and oblivious from
the change. Service Oriented Architecture (SOA) provide a
good way to abstract data to a consumer but the consumers are
limited to those application that can work with a service. The
SOA application typically takes the form of client application
(s) connecting to one or more web services to provide specific
data. This works well for new applications but does not
address accessing existing application that may need that data
especially existing applications that cannot be rewritten or
modified to allow access to service based data.

SUMMARY OF THE INVENTION

Certain aspects of the present disclosure provide a method
to configure a data source name (DSN) for use during a data
source access. The method generally includes selecting a
driver, providing an identifier that identifies a class, and a
library or an application that implements a driver interface to
access the data source, forwarding a connection string with
the identifier from an implementation of the driver interface
to the driver and forwarding the connection string from the
driver to a driver manager managing a client.

Certain aspects of the present disclosure provide an appa-
ratus to configure a data source name (DSN) for use during a
data source access. The apparatus generally includes at least
one processor and a memory coupled to the at least one
processor. The processor is generally configured to select a
driver, provide an identifier that identifies a class, and a
library or an application that implements a driver interface to
access the data source, forward a connection string with the
identifier from an implementation of the driver interface to
the driver and forward the connection string from the driver to
a driver manager which manages a client.

Certain aspects of the present disclosure provide a com-
puter-program product to configure a data source name

10

15

20

25

30

35

40

45

50

55

60

65

2

(DSN) for use during a data source access, the computer-
program product generally including a computer-readable
medium comprising code to select a driver, provide an iden-
tifier that identifies a class, and a library or an application that
implements a driver interface to access the data source, for-
ward a connection string with the identifier from an imple-
mentation of the driver interface to the driver and forward the
connection string from the driver to a driver manager manag-
ing a client.

BRIEF DESCRIPTION OF DRAWINGS

In the accompanying figures, similar reference numerals
may refer to identical or functionally similar elements. These
reference numerals are used in the detailed description to
illustrate various embodiments and to explain various aspects
and advantages of the present disclosure.

FIG. 1 illustrates a system for accessing a data source from
a client using a Myriad driver in accordance with certain
aspects of the disclosure.

FIGS. 2a-2fillustrate steps for creating a database source
name (DSN) in accordance with certain aspects of the disclo-
sure.

FIG. 3 is a flow diagram illustrating a process for creating
a Data Source Name (DSN) in accordance with certain
aspects of the disclosure.

FIG. 4 is a flow diagram illustrating a process for connect-
ing to an IMyriad implementation via a Myriad driver and
using the Myriad driver to access a data source in accordance
with certain aspects of the disclosure.

FIG. 5 is a flow diagram illustrating a process for config-
uring a data source name (DSN) for use during a data source
access in accordance with certain aspects of the disclosure.

The foregoing summary, as well as the following detailed
description of certain embodiments of the present invention,
will be better understood when read in conjunction with the
appended drawings. The drawings illustrate diagrams of the
functional blocks of various embodiments. The functional
blocks are not necessarily indicative of the division between
hardware circuitry. Thus, for example, one or more of the
functional blocks (e.g., processors or memories) may be
implemented in a single piece of hardware (e.g., a general
purpose signal processor or a block or random access
memory, hard disk, or the like). Similarly, the programs may
be stand alone programs, may be incorporated as subroutines
in an operating system, may be functions in an installed
imaging software package, and the like. It should be under-
stood that the various embodiments are not limited to the
arrangements and instrumentality shown in the drawings.

DETAILED DESCRIPTION

It should be observed that apparatus parts and components
have been represented by conventional symbols in the draw-
ings, showing only specific details that are relevant for an
understanding of the present disclosure. Further, details that
may be readily apparent to person ordinarily skilled in the art
may not have been disclosed.

Certain aspects of the disclosure include creating an open
data base connectivity (ODBC) driver (e.g. Myriad ODBC
driver) which routes requests from a driver manager on a
Windows-based system to Component Object Model (COM)
based applications or libraries that implement an interface
(e.g. IMyriad interface) published by the Myriad ODBC
driver.

Typically an ODBC driver connects to a particular version
of a datasource provider which can be configured on WIN-

US 9,419,853 B1

3

DOWS™-based systems using administration tool. The
properties that may be configured are typically defined by the
driver. To connect using the Myriad ODBC Driver, the
Myriad ODBC Driver only requires a Program Identifier
(Progld) which identifies a class and the library or application
that implements the IMyriad interface that is published by the
driver. Any other properties that may be required to connect is
typically handled by the COM based datasource that imple-
ments the IMyriad interface.

Once a client has connected using the Myriad ODBC
Driver, all ODBC calls are then passed on to an implementa-
tion of the IMyriad Interface.

In certain aspects, by using ODBC as the client application
connection point, existing applications can access any type of
data and by using COM as the method to provide data to the
driver, developers can write COM-based applications or
libraries that can act as data source. Both ODBC and COM are
well defined and mature technologies and thus developers
may leverage this existing knowledge base to provide data to
clients.

In certain aspects the operations that may be performed by
developers may include:

A. Implement the IMyriad interface using C++, .Net lan-

guages, VB or any other language;

B. Register the COM library or application on the client’s
system,

C. Modify existing Data Source Name(s) (DSN) to use the
Myriad ODBC Driver so that current applications may
connect to new datasources.

D. Develop applications that utilize the Myriad ODBC
Driver in any language that supports ODBC connectiv-
ity.

In certain aspects, operations that may be performed by

clients may include:

A.On WINDOWS™ based systems, clients (or users) may
use the ODBC Data Source Administrator to create a
file, system or user Data Source Name (DSN) that stores
information on how to connect to the datasource using
the Myriad ODBC Driver.

B. Users may then access the data using any of the
MICROSOFT OFFICE™ applications, MSQuery,
ADO or any other data access tools that can use ODBC.

In certain aspects, for already existing applications, the
existing Data Source Name(s) (DSN) may be modified to use
the Myriad ODBC Driver so that current applications may
connect to new data sources. For those applications that allow
the data source to be configured, a DSN may be created that
uses the Myriad ODBC Driver.

The Myriad ODBC Diriver, using two well defined and
mature technologies such as COM and ODBC, provides cli-
ent applications such as MICROSOFT OFFICE™ products
access to various datasources, such as web-services, that may
be configured and accessed by non-developers.

FIG. 1 illustrates a system for accessing a data source from
a client using a Myriad driver in accordance with certain
aspects of the disclosure. Myriad ODBC driver 106 facilitates
client 102 to access data source 110.

According to certain aspects, a DSN is first created using
the ODBC data source administrator 112 and passed on to the
driver manager 104. In certain aspects, the creation of the
DSN starts with a user selecting Myriad ODBC driver 106 in
a dialog box ofthe ODBC data source administrator 112. The
ODBC driver 106 prompts the user to provide a ProgID which
is used to find an IMyriad implementation for IMyriad inter-
face 108. The IMyriad interface 108 facilitates access to data
source 110. The driver 106 passes control over to the IMyriad
implementation to get the required connection settings. The

10

15

20

25

30

35

40

45

50

55

60

65

4

IMyriad implementation may then pass out a complete con-
nection string to the driver 106 which may then pass it out to
the driver manager 104 which may write it out for later use.

In certain aspects, once the DSN is created, a consumer
may attempt to connect to the data source 110 using the DSN
created by in the ODBC data source administrator 112 or by
passing a complete connecting string specifying a driver
name of the ODBC driver 106 and the ProgID for the IMyriad
implementation of IMyriad interface 108. The driver 106 then
loads the IMyriad implementation based on the ProgID. Once
the IMyriad implementation is loaded, the driver 106 mar-
shalls all ODBC calls (or requests) from client 102 (via driver
manager 104) to the IMyriad implementation to handle the
requests. Thus, the Myriad acts as an interface between the
driver manager 104 and custom implementations of the
IMyriad interface 108. In certain aspects, all data and schema
requests from the client 102 are routed through the driver
manager to the driver 106 and then to the IMyriad implemen-
tation of the IMyriad interface 108 that was connected using
the ProgID property.

In certain aspects, while connecting to the IMyriad imple-
mentation, the connection string must contain either a DSN or
at least the driver name of the Myriad driver 106. The driver
manager 104 typically determines which driver to load. In
certain aspects, if a ProglD for the IMyriad implementation is
not included in the string, the driver 106 will prompt for the
ProgID that identifies the library or applications 109 and class
that implements the IMyriad interface 108. With the ProgID,
the connection information is then routed to the IMyriad
implementation. Then the user may be prompted for any
information that is required to complete the connection. The
connection result may then be passed back to the driver 106
which may then be passed back to the calling application
(client 102) through the driver manager 104.

FIGS. 2a-2fillustrate steps for creating a database source
name (DSN) in accordance with certain aspects of the disclo-
sure. A database source name (DSN, often also known as a
data source name) in general refers to a data structure that
contains the information about a specific data source (data-
base or other data source) that is needed by an Open Database
Connectivity (ODBC) driver in order to connect to it. A DSN
usually resides either in a registry or in a separate text file. It
stores information such as name of the data source, directory
of'the data source, name of a driver which can access the data
source, user ID for database access (if required) and user
password for database access (if required).

For creating the DSN, ODBC Data Source Administration
Tool is launched. For example FIG. 2a illustrates a dialog box
for a data source administration tool. Subsequently, a File,
system or a User Tab is selected. For example, the “User
DSN” tab is currently selected in the tool dialog box of FIG.
2a. The user selects a data source name and clicks the “Add”
button.

In FIG. 2b, a “Create New Data Source” dialog box is
illustrated. The user selects a driver for setting up a data
source, fore.g. the user selects the Myriad Driver in the dialog
box of FIG. 2b. In FIG. 2¢, the user is then prompted to
provide a name for the DSN file that will be created. In FIG.
24, the user is prompted to provide a ProgID for the IMyriad
implementation via a “Driver Connection Properties” dialog
box. In certain aspects, the user may be prompted to provide
a DSN name as illustrated in FIG. 2e. Clicking the “Check”
button in FIG. 2e will attempt to load the IMyriad implemen-
tation and route the connection information. In certain
aspects, if the implementation requires additional informa-
tion, it may prompt the user for additional information or
provide default values. If the IMyriad implementation con-

US 9,419,853 B1

5

nection method returns “True”, then a dialog box returns
“Connection Successful” as illustrated in FIG. 2f

In certain aspects, clicking “OK” button in the dialog box
of FIG. 2e will, like clicking “Check” button, attempt to load
the IMyriad implementation and route the connection infor-
mation. If the implementation requires additional informa-
tion, it may prompt the user for additional information or
provide default values. This may then pass the connection
information to the Driver Manager to write either to File,
System Registry setting or a User Registry setting. The new
DSN will now appear in the ODBC Data Source Administra-
tion tool.

In certain aspects, an existing DSN may be configured by
passing the request on to the IMyriad implementation to
prompt for any additional information to connect. This may
then be passed back to the Myriad driver to modify the File
DSN or the System or User registry setting.

In certain aspects, an existing DSN may be removed by
selecting the type of DSN which may be any of the File,
System or User and removing it by clicking a remove button.

FIG. 3 is a flow diagram illustrating a process 300 for
creating a Data Source Name (DSN) in accordance with
certain aspects of the disclosure. Process 300 starts at 302
with a user selecting the Myriad driver from a “Create New
Data Source” dialog box provided by a data source adminis-
tration tool. At 304, the driver prompts the user to provide a
ProgID used to find the IMyriad implementation. At 306, the
driver passes control over to the IMyriad implementation to
get the required connection settings. At 308, the IMyriad
implementation passes out a complete connection string to
the driver. At 310, the driver passes the received connection
string to the driver manager which writes it out for later use.

FIG. 4 is a flow diagram illustrating a process 400 for
connecting to an IMyriad implementation via a Myriad driver
and using the Myriad driver to access a data source in accor-
dance with certain aspects of the disclosure. Process 400
starts at 402 with the user attempting to connect to the
IMyriad implementation using a DSN created in an ODBC
Data Source Administration Tool or passing a complete con-
nection string specifying a driver name for the Myriad driver
and the ProglD of the IMyriad implementation. At 404, the
Myriad driver loads the IMyriad implementation based on the
DSN and/or ProglD for the connection string. At 406, once
the IMyriad implementation is loaded, the Myriad driver
marshals all the ODBC calls from the driver manager to the
IMyriad implementation for further processing.

FIG. 5 is a flow diagram illustrating a process 500 for
configuring a data source name (DSN) for use during a data
source access in accordance with certain aspects of the dis-
closure. Process 500 starts at 502 with selecting a driver. At
504, an identifier is provided that identifies a class, and a
library or an application that implements a driver interface for
accessing the data source. At 506, a connection string is
forwarded with the identifier from an implementation of the
driver interface to the driver. At 508, the connection string is
forwarded from the driver to a driver manager managing a
client.

Those of skill in the art would understand that information
and signals may be represented using any of a variety of
different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols,
and chips that may be referenced throughout the above
description may be represented by voltages, currents, elec-
tromagnetic waves, magnetic fields or particles, optical fields
or particles, or any combination thereof.

Those of skill would further appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm

10

15

20

25

30

35

40

45

65

6

steps described in connection with the disclosure herein may
be implemented as electronic hardware, computer software,
or combinations of both. To clearly illustrate this interchange-
ability of hardware and software, various illustrative compo-
nents, blocks, modules, circuits, and steps have been
described above generally in terms of their functionality.
Whether such functionality is implemented as hardware or
software depends upon the particular application and design
constraints imposed on the overall system. Skilled artisans
may implement the described functionality in varying ways
for each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the present disclosure.

The various illustrative logical blocks, modules, and cir-
cuits described in connection with the disclosure herein may
be implemented or performed with a general-purpose proces-
sor, a digital signal processor (DSP), an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA) or other programmable logic device, discrete gate or
transistor logic, discrete hardware components, or any com-
bination thereof designed to perform the functions described
herein. A general-purpose processor may be a microproces-
sor, but in the alternative, the processor may be any conven-
tional processor, controller, microcontroller, or state
machine. A processor may also be implemented as a combi-
nation of computing devices, e.g., a combination of a DSP
and a microprocessor, a plurality of microprocessors, one or
more microprocessors in conjunction with a DSP core, or any
other such configuration.

The steps of a method or algorithm described in connection
with the disclosure herein may be embodied directly in hard-
ware, in a software module executed by a processor, or in a
combination of the two. A software module may reside in
RAM memory, flash memory, ROM memory, EPROM
memory, EEPROM memory, registers, hard disk, a remov-
able disk, a CD-ROM, or any other form of storage medium
known in the art. An exemplary storage medium is coupled to
the processor such that the processor can read information
from, and write information to, the storage medium. In the
alternative, the storage medium may be integral to the pro-
cessor. The processor and the storage medium may reside in
an ASIC. The ASIC may reside in a user terminal. In the
alternative, the processor and the storage medium may reside
as discrete components in a user terminal.

In one or more exemplary designs, the functions described
may be implemented in hardware, software, firmware, or any
combination thereof. If implemented in software, the func-
tions may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium. Com-
puter-readable media includes both computer storage media
and communication media including any medium that facili-
tates transfer of a computer program from one place to
another. A storage media may be any available media that can
be accessed by a general purpose or special purpose com-
puter. By way of example, and not limitation, such computer-
readable media can comprise RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium that can
be used to carry or store desired program code means in the
form of instructions or data structures and that can be
accessed by a general-purpose or special-purpose computer,
or a general-purpose or special-purpose processor. Also, any
connection is properly termed a computer-readable medium.
For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,

US 9,419,853 B1

7

then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave
are included in the definition of medium. Disk and disc, as
used herein, includes compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk and blu-ray disc
where disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the
above should also be included within the scope of computer-
readable media.

The previous description of the disclosure is provided to
enable any person skilled in the art to make or use the disclo-
sure. Various modifications to the disclosure will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other variations without
departing from the spirit or scope of the disclosure. Thus, the
disclosure is not intended to be limited to the examples and
designs described herein, but is to be accorded the widest
scope consistent with the principles and novel features dis-
closed herein.

What is claimed is:

1. A method to configure a data source name (DSN) to use
during a data source access, the method comprising:

selecting a driver;

providing an identifier that identifies a data source, the

identifier comprising an identifier of a class of the data
source, and at least one of a library or an application of
the data source that implements a driver interface to
access the data source;

using the identifier, by the driver executing on a computer,

to access an implementation of the driver interface of the
data source;

determining, by the implementation of the driver interface,

connection settings for the data source and generating a
connection string;
receiving, by the driver executing on the computer, the
connection string with the identifier from the implemen-
tation of the driver interface to the driver; and

forwarding the connection string from the driver to a driver
manager managing a client;

wherein the library or application is component object

model (COM)-based.

2. The method of claim 1, wherein the driver is used by the
client to access the data source based on the DSN.

3. The method of claim 2, further comprising:

modifying an existing DSN to use the driver so that a

current client application can connect to the data source.

4. The method of claim 2, further comprising:

creating a DSN that uses the driver for a client application

that allows the data source to be configured.

5. The method of claim 1, wherein the implementation
prompts for additional information while configuring the
DSN.

6. The method of claim 5, wherein the implementation
provides default values for any additional information.

7. An apparatus to configure a data source name (DSN) to
use during a data source access, the apparatus comprising:

a memory comprising instructions; and coupled to the at

least one processor

at least one processor, communicably coupled to the

memory, and configured to read the instructions to:

select a driver;

provide an identifier that identifies a data source, the
identifier comprising an identifier of a class of the data
source, and atleast one ofalibrary or an application of
the data source that implements a driver interface to
access the data source;

20

25

30

35

40

45

50

55

8

use the identifier to access an implementation of the
driver interface of the data source;

determine, by the implementation of the driver interface,
connection settings for the data source and generate,
by the implementation of the driver interface, a con-
nection string;

receive the connection string with the identifier from the
implementation of the driver interface to the driver;
and

forward the connection string from the driver to a driver
manager which manages a client;

wherein the library or application is component object
model (COM)-based.

8. The apparatus of claim 7, wherein the driver is used by
the client to access the data source based on the DSN.

9. The apparatus of claim 8, wherein the at least one pro-
cessor is further configured to:

modify an existing DSN to use the driver so that a current
client application can connect to the data source.

10. The apparatus of claim 8, wherein the at least one

processor is further configured to:
create a DSN that uses the driver for a client application
that allows the data source to be configured.
11. The apparatus of claim 7, wherein the implementation
prompts for additional information while configuring the
DSN.
12. The apparatus of claim 11, wherein the implementation
provides default values for any additional information.
13. A non-transitory computer-program product to config-
ure a data source name (DSN) to use during a data source
access, the computer-program product comprising:
a non-transitory computer-readable medium comprising
code executable by at least one processor that, when
executed, causes the at least one processor to:
select a driver;
provide an identifier that identifies a data source, the
identifier comprising an identifier ofa class of the data
source, and at least one ofalibrary or an application of
the data source that implements a driver interface to
access the data source;

determine, by the implementation of the driver interface,
connection settings for the data source and generate,
by the implementation of the driver interface, a con-
nection string;

receive the connection string with the identifier from an
implementation of the driver interface to the driver;
and

forward the connection string from the driver to a driver
manager managing a client;

wherein the library or application is component object
model (COM)-based.

14. The non-transitory computer-program product of claim
13, wherein the driver is used by the client to access the data
source based on the DSN.

15. The non-transitory computer-program product of claim
14, further comprising:

modifying an existing DSN to use the driver so that a
current client application can connect to the data source.

16. The non-transitory computer-program product of claim
14, further comprising:

creating a DSN that uses the driver for a client application
that allows the data source to be configured.

17. The non-transitory computer-program product of claim

13, wherein the implementation prompts for additional infor-
mation while configuring the DSN.

US 9,419,853 B1
9

18. The non-transitory computer-program product of claim
17, wherein the implementation provides default values for
any additional information.

#* #* #* #* #*

10

